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ABSTRACT

A model for soil vapor extraction (SVE) is developed which permits the use of
nonlinear adsorption isotherms and takes desorption Kinetics into account. The
configuration modeled is a single vertical well. The model is used to exhibit the
dependence of cleanup rate on the parameters of the nonlinear adsorption isotherm
and on a rate constant k¢ associated with adsorption. Cleanup curves similar to
those found in modeling diffusion-limited SVE by the lumped diffusion parameter
method are observed for small values of k¢. Slow cleanup rates can also result
from isotherm parameter values. In particular, severe tailing in the terminal phase
of remediation may result from an equilibrium isotherm which approaches the
form C8s = K(C°**) B where B > | as C*°™®d approaches zero. As with diffu-
sion-limited SVE, short-term pilot-scale experiments may well not identify condi-
tions which cause tailing during terminal phase cleanup. One can distinguish be-
tween poor SVE performance due to small rate constants and poor SVE
performance due to the adsorption isotherm by soil gas volatile organic compound
(VOC) concentration rebound curves. Rebound occurs if diffusion and/or desorp-
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tion rates are limiting. Rebound does not result if adsorption isotherm characteris-
tics are limiting. Increases in the gas flow rate will not be helpful in the former
case. while they will result in increased VOC removal rates in the latter.

INTRODUCTION

Soil vapor extraction (SVE) techniques are now well established for
the removal of volatile organic compounds (VOCs) from contaminated
sites. Some 83 Superfund sites were using or scheduled to use the tech-
nique as of October 1992, and it is in use on many other sites for removal
of VOCs. EPA has published a number of reports on SVE (1-4), as well
as the proceedings of a symposium on the subject (5). Hutzler and his
coworkers (6, 7) and Wilson and Clarke (8) have reviewed the technique
in detail. No attempt is made here to review the extensive literature on
the subject.

The mathematical modeling of SVE provides physical insight into the
factors affecting the process, as well as support for initial site-specific
evaluation. interpretation of lab- and pilot-scale field data, design of pilot-
and full-scale field SVE operations, and estimation of costs and cleanup
times. Several groups in the United States have developed SVE models,
including Marley and his coworkers at Vapex (9-15 and other papers):
Johnson, Kemblowski, and their coworkers (16-20 and other papers);
Cho (21); the ldaho National Engineering Laboratory (22, 23); and the
Eckenfelder—Vanderbilt group (24-26, for example). SVE modeling work
has also been carried out at the University of Malaga in Spain (27-30, for
example).

The assumption of local equilibrium with respect to transport of VOC
between the advecting soil gas and the stationary phase(s) containing VOC
as an adequate approximation (31, 32) has been found invalid at a number
of sites. At these, rapid decline in off-gas VOC concentrations after a
brief initial phase of operation (a few days, sometimes only a few hours)
followed by an extended period of tailing during the final phase of the
cleanup indicates that Jocal equilibrium is not being maintained—that dif-
fusion and/or desorption kinetics are acting as a bottleneck which limits
the release of VOC to the advecting gas. DiGiulio et al. (33) described
possible pilot-scale field experiments to assess mass transport limitations,
and Lyman and Noonan (3) commented that such limitations are common.
DiGiulio (34) discussed in some detail the importance of mass transport
limitations in SVE.
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Some time ago we presented a lumped parameter method for including
mass transport kinetics limitations in SVE models (27-30, 35) which could
give removal rates much reduced below those obtained from models mak-
ing the local equilibrium assumption. Unfortunately, however, this model
could not yield with the same parameter set the rapid initial VOC removal
rates and the quite slow rates toward the end of the remediation which
are observed in the field. The lumped parameter approach to diffusion
mass transport is evidently over-simplified and does not provide the broad
spectrum of time constants necessary to describe what is happening.

This difficulty was discussed recently (36), and a model for SVE lab
column operation was described which used a more realistic approach
to diffusion transport. This was one of two distributed diffusion models
explored which assume that VOC diffuses from water-saturated layers of
finite thickness before it reaches the advecting soil gas and is removed.
In one approach the NAPL is present as droplets distributed throughout
the water-saturated low-permeability layers; in the other the nonaqueous
phase liquid (NAPL) is present as a film within the water-saturated lamel-
lae. The two approaches could be made to yield realistic and rather similar
results on suitable selection of the parameters in the models.

In subsequent papers of this series (37, 38) we discussed the extension
of the first approach (in which NAPL is present as distributed droplets
distributed throughout the low-permeability lenticular domains) and the
second approach (in which NAPL is present as a thin layer within the
low-permeability lenticular domains from which it must diffuse to the ad-
vecting air) to SVE by means of a horizontal slotted pipe well. The models
performed well, easily producing the high initial VOC removal rates, the
rapid declines in off-gas VOC concentration, and the lengthy plateaus and
tailing observed experimentally.

The physical picture with these models was not clear, however. For
the first model it was not evident how droplets of NAPL could migrate
to or be formed in the interiors of the low-permeability domains. For the
second it was not evident how the postulated thin layer of NAPL was to
be created deep within the low permeability structures in the first place.
This left these models of the diffusion process lacking a credible, easily
visualized physico-chemical basis. They had meaning in terms of the least
dimension of the low-permeability structures from which diffusion was
taking place, and they produced physically acceptable results, but the
physical picture was rather contrived.

A subsequent model (39) avoided these difficulties by having the NAPL
present as droplets only in the mobile (air-filled) porosity, and excluding
it from the water-saturated low-permeability porous domains. It was as-
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sumed that VOC could migrate into these domains only by diffusion of
dissolved VOC in the aqueous phase. It was assumed that initially (at the
time of the spill or sudden leak) the VOC is present only as vapor and
NAPL, both in the air-filled porosity, and that subsequently the VOC
diffuses into the water-saturated domains. In remediation one therefore
sees rapid removal of VOC initially as the NAPL droplets evaporate in
the advecting gas stream, followed by a much slower rate of removal as
VOC diffuses back out of the water-saturated domains.

There is another mechanism for kinetic control of SVE, however, which
none of the above modeling work takes into account. This is the rate of
desorption of adsorbed VOC. If desorption processes are slow, efforts to
enhance dispersion/diffusion are likely to have rather limited benefits.
Recently there have been a number of reports on the desorption kinetics
of VOCs in soils (40-44) indicating that diffusion is by no means the only
factor impeding the rates of SVE cleanups. In addition, SVE models have
generally assumed some sort of linear isotherm. Often this is simply
Henry’s law; sometimes a partition factor is measured experimentally or
estimated from the concentration of natural organic carbon in the soil.
One expects that use of more realistic isotherms in the SVE models may
lead to the appearance of tailing in SVE remediation somewhat similar to
that resulting from the kinetics of diffusion and, presumably, of desorption
as well.

Here we shall first explore some aspects of various adsorption isotherms
which might be considered for use in a model for SVE. This is followed
by discussion of the constraint imposed on the expression for the rate of
desorption by the expression for the rate of adsorption and the adsorption
isotherm. The development of a model for the SVE of an adsorbed con-
taminant is then presented. The calculation of the gas flow field used here
is identical to that employed in a number of our earlier SVE models (39,
for example), so only the resuits will be presented here. The approach to
local adsorption/desorption equilibrium will be discussed in detail. A sec-
tion on results presents plots of runs showing the dependence of SVE
cleanup rates on the various parameters of the model. The paper closes
with a section on conclusions.

ANALYSIS

The configuration of the single vertical SVE well analyzed here is shown
in Fig. I, along with much of the notation. The model for development
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FIG. 1 The geometry of an SVE well and some of the notation used.

of an SVE model breaks down into three major parts; the analysis of the
equilibrium and mass transport factors governing the release of the VOC
being vapor stripped, the calculation of the soil gas flow field in the vicinity
of the vacuum well, and the combining of the two to form the model.

A. Adsorption Isotherms and Rates of Adsorption
and Desorption

We first turn to the relationship governing the equilibrium distribution
of the semivolatile organic compound (SVOC) between the mobile vapor
phase and the stationary adsorbed (perhaps condensed) phase(s), and to
the rates of adsorption and desorption.

Adsorption Isotherms

The isotherms will be written here in a way analogous to Henry's law,
in which the vapor phase SVOC concentration C#¥ (kg/m> of air) is ex-
pressed in terms of the stationary phase concentration C# (kg/m? of soil).
(Usually adsorption isotherms give C* as a function of C#; it turns out
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here to be convenient to invert the equation.) We shall explore a number
of isotherms to determine which are physically reasonable for application
in SVE and which must be eliminated or modified.

1. The Linear Isotherm. The simplest isotherm is the linear isoth-
erm—an extension of Henry's law,

CcY = K. .C° (N

This is widely used in modeling work because it is simple. Unfortunately,
it cannot be even approximately correct at large values of C* since these
will yield values of C¥ in excess of the value allowed by the equilibrium
vapor pressure of the pure liquid SVOC, C4,. given by

(MW)PO,(T)
Y = —RT—D 2)

where MW = molecular weight of the SVOC, kg/mol
PO.p(T) = pure SVOC vapor pressure (atm) at temperature T
T = temperature. K
R = gas constant, 8.204 x 107° m* atm/mol-deg

One can patch the linear isotherm to avoid this difficulty by calculating
C# by Eq. (1) and then. if C¥ > C¥.. setting C* = C¥,.

2. The Freundlich Isotherm. The Freundlich isotherm, commonly
written as

C¢ = Kp(C¥)n 3)
is written in our form as
C* = (I/Kp)y(cy" 4)

This is widely used but suffers from the same problem at large values of
C* as does the linear isotherm, and so requires the introduction of a similar
patch to avoid values of C* larger than C¥%,,.

3. The Langmuir Isotherm. The Langmuir isotherm may be written

as
C.w

C* = Chax m (5)
which is readily solved for C#: one obtains
C{,C*

C = —12— (6)

c‘i"?nax - C s



12: 07 25 January 2011

Downl oaded At:

SOIL CLEANUP BY IN-SITU AERATION. XXI 527

In the applications of interest here, this isotherm suffers from the disad-
vantage that C# approaches infinity as C# approaches C,ax, which is
physically impossible; C# must never be larger than C%,,.
4. The BET Isotherm. The BET isotherm is given by
G,.c(C8ICE,
c* = dlis )
[1 = (C*/C&II + (¢ — INC¥CEa)]
where G,, and ¢ are constants characteristic of the SVOC, the adsorbent,
and the temperature. Equation (7) can be solved for C#/C%,; the result is

C*  —(G,clC°+2=0)+[(G,,c/C*+2— ) +4(c - 1)]'?
[ 2c—1)

As C* approaches infinity, C*/C¥%, approaches unity, which is the desired
behavior. The BET isotherm therefore shows acceptable behavior at high
SVOC soil concentrations without modification. Some representative
plots of C#/C%,, versus C*/G,, are given in Fig. 2.

(8)

09 r
06}
g g
C /Csat

c=2

03rF 4

10

20
1 I J
0 25 s 50 75
C /Gm

FIG. 2 Plots of C&/C%, (ordinate) versus C*/G,, (abscissa) for the B-E-T isotherm. ¢ = 2,
4, 10, and 20, as indicated.
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5. Another Acceptable Isotherm. Another group of isotherms for
which C# approaches C¥%., from below as C* approaches infinity is given
by the equation

Ct(C°/C")®

¢ = Tx(CiIc? ©)

where C' and B are parameters depending on the SVOC, the adsorbent
medium, and the temperature. At low values of C*/C"’ this approaches the
behavior of the Freundlich isotherm.

Cce = QEL(CS)B (10)

(C"®

and as C*/C' approaches infinity, C¥¢ approaches C%,, as desired. Some
plots of C# versus C* are given for various values of the exponent B in
Fig. 3.

10
2.00
1.50
1.00
0.75
0.50

0.5}

g 4g
C ICsat
] 3
0 25 5.0

S
c/ic

FIG. 3 Plots of C#/C%, (ordinate) versus C*/C’ (abscissa) for the isotherm specified by Eq.
(9). a modified Freundiich isotherm. Values of the exponent B are 0.5, 0.75, 1.0, 1.25, 1.5,
1.75. and 2.0. from bottom to top on the right.
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Generally, then, we can write
C* = F(C*) (1

where F is a physically acceptable continuous isotherm function such as
Eq. (8) or (9), or may be one of the other isotherm functions, modified,
if necessary, to permit it to handle values of C* sufficiently large that the
simple function would generate values of C# larger than C%,,.

Adsorption and Desorption Rates

We next turn to the rates of adsorption and desorption. The process
being considered is

ky

SvOocCe# <:_A_—> Svoc:
For the forward reaction rate we write
Rtorwara = kfC* (12)
and for the reverse reaction, similarly,
Rieverse = k. C* (13)

where ks and k. may be functions of C#, C*, and possibly other variables.
Then at equilibrium

Rtorward = Rreverse (14)
$O
kfC* = k.C* (15)
and
Ce = (k/kp)C* = F(C?) (16)

from Eq. (11). We therefore see that the functions 4, and ks must be related
by the equation

k, = k;F(C*)IC* (17)
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That is, for a given isotherm F, once we postulate a form for &, &, is
determined from thermodynamic considerations.

We wish to write expressions for the rates of adsorption and desorption
of SVOC. To do this we next carry out a mass balance for SVOC in a

volume element in which we consider only adsorption/desorption kinetics.
Let

V = volume of the volume element. m?
v = gas-filled porosity of soil, dimensionless
m = mass of SVOC in the volume element. kg

Then
m = AVOCH + C*) (18)
and
d aC+ ac™
[ﬁmmw}“‘“ -0 V[ i }, " [ At Juos (19)
des dee Jads
from which
aC* 0>
Now
(.jC\ ¢ g K}
[ar Lg\ = hC = kC (21)

which, with Eq. (17). yields

aC? ac?
— [y — )] = D)
[ o L‘é: ki C F(CY)] i (22)

and, with Eq. (20).

(')C ke
at

L\ = —(kW[CY = FCY] (23)
des

This is as far as purely formal arguments will permit us to go. At this
point we must select on some basis the rate *“constant’ &, for the adsorp-
tion reaction. As mentioned above, this may itself be a function of concen-
trations. etc. In our subsequent work we shall take it to be a constant,
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thereby making the assumption that the adsorption process is simply first
order in the gaseous SVOC concentration. If more detailed information
permits one to choose some other rate law, perhaps more complex. this
presents no difficulties in the subsequent theoretical analysis.

B. Gas Flow Field

We assume a porous medium of constant, isotropic permeability, so
may use the method of images from electrostatics (45) for calculating the
soil gas pressures near the SVE well. We work in cylindrical coordinates
r, z. The analysis is given in detail elsewhere (39), so we will merely
summarize the results here. Let

h = thickness of porous medium (depth to water table). m
rmax = radius of domain of interest, m

r.. = radius of gravel packing of the well, m

P.. = wellhead gas pressure (<1 atm), atm

P, = ambient pressure, atm

P(r, z) = soil gas pressure at the point (r, z), atm

Kp = Darcy’s constant, m%atm-s

a = distance of well above the water table, m

Q = molar gas flow rate to well, mol/s

g = standard volumetric gas flow rate to well, m%/s

v, = r-component of superficial velocity, m/s (m*/m?-s)
v, = z-component of superficial velocity, m/s (m*/m?:s)
R = gas constant, 8.206 x 10~° m* atm/mol-deg

T = temperature, degrees Kelvin

The pressure of an ideal gas in a porous medium satisfies the equation

VP2 =0 (24)
with boundary conditions
Py (25)
at the water table, and
P3(r, h) = P2 = 1 atm® (26)

at the soil surface. Define a potential function W(r, z) by
W(r. 2) + P; = P*(r,2) (27)
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so the problem becomes

VW = 0 28)
wir. 0 _, (29)
2
Wir,h)y =0 (30)

There must also be a sink at (0, @) to represent the vacuum well.
We use the method of images (45) to construct W; it is given by

: 1 1
W=A Z[

“ | P+ —dnh — a7 {F + [z - 4nh + aF}"

1
{r + [z - 4n - 2h — al}*?

(3

|
+ F+[z—-@n—2h + a]z}”z]

The constant A is evaluated by the requirement that at (0, ¢ + r,.), P =
P..,the wellhead pressure. Here r. is the radius of the well gravel packing.
We find that

A = (P2 - P))S (32)
where S is given by

S=72{—|, 1 l . I

N ro — 4nhl  2a + 1. — 4nh| 7 . — (4n — 2)H]

+
2a + r, — (4n — )A|

' } (33)

The Darcy’s constant can be calculated in terms of observables from Eq.
(34),

_ qS
Kp = mPE = PD) (34)
The superficial velocity of the gas is given by
v = —KpVP = —KpVW/[2(P. + W)"?] (35)

where the components of VW are dW/dr and aW/az, and the velocity com-
ponents are v, and «.. This completes the summary of the calculation of
the soil gas velocity field.
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C. Completion of the Model: Volume Elements and
Surfaces of Volume Elements, Advective Mass Balance

See Fig. 1. The volume of the annular volume element is given by

AV, = (2i — Dm(Ar)*Az (36)

The surfaces of this volume element are given by the following equations:
Inner Sh =2 — I)ymArAz (37

Outer S§Q = 2imArAz (38)

Top and Bottom ST =8B =2 — Du(Ar)? (39)

The advective mass balance for VOC in this volume element is then

aCE ,
vA V,’j[ CJ:I = S,I:/IV,I'J‘[S(I’I)C?I, 1. + S( - 'UI )C;]
dv

o .
+ SPR=S(=v°)CF 1y — SEO)CE] (40)
+ SPURIS@P)CE; - + S(=vP)Cf]
+ SGul = S(=v")CEr = S@HCH]

where

[ . 1

u}i = 7| — DAF, (j - E)AZ] 41)
[ 1

l»ff) = v, iAr, (j — i)Az:l (42)
I I

B = v, (i — i)Ar, G - l)Az] (43)

1
vE = v{(z’ - E)Ar, jAz} (44)

and the function S(v) is zero if v < 0 and one if v > 0. The rate of change
of Cf; with time is then given by

adv

& - | (45)
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The differential equations which constitute the model are Egs. (22). (23),
(40), and (45).

It is possible to speed up the calculations substantially by making the
steady-state approximation for C in Eq. (45); one sets dC#/dr equal to
zero in Eq. (45), solves the ijth algebraic equation which results for Cf,
and, in the computer coding, starts with the largest values of i and j and
works downward to lower values. Discrepancies between the results ob-
tained from the integration of the time-dependent equations and results
from solution of the mixed algebraic and differential equations resulting
from the steady-state treatment were about 0.19%.

The total residual mass of contaminant is calculated from Eq. (46),

Mo = Z Z AVU[VCT; + C?/] (46)

i=17=1
and the VOC concentration in the off gas is given by
Cefﬂ = CT.A/\\QII (47)

where AV juen i1s the volume element containing the screened section of
the well.

D. Initial Distribution of VOC among the Phases

We assume that the VOC at the site has had ample opportunity to equili-
brate between the vapor and the adsorbed phases. A mass balance on a
volume element containing contaminant gives

Ciota = vC* + C° (48)
This. with Eq. (11). gives
Cx = Cmtal - VF(C\) (49)

Since C* 1s generally much smaller than C*. Eq. (49) can be solved itera-
tively according to the scheme

Ci‘+l = Ctu(ul - VP.(CI\\) (50)
where we set C} = Ci.w On the right-hand side to initiate the iteration.
RESULTS

These models were implemented in TurboBASIC on an AlphaSystem
486-DX microcomputer running at 50 MHz. A simple Euler method was
used for the integration. Typical runs with the steady-state model for SVE
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with a single vertical well required about 6-30 minutes, depending on how
long a time period was simulated. All runs modeled used Eq. (9) for the
adsorption isotherm. Default valucs of the parameters are given in Table
1. Results are presented as plots of Mo (1)/M(0) versus time in days;
Figs. 9 and 10 also include plots of Cem(1)/C%., to show soil gas concentra-
tion rebound after wells have been shut down.

Figure 4 shows the dependence of cleanup on the isotherm parameter
C%,,, which is the saturation vapor concentration of the VOC. Values of
C%,.:, from the top down, are 25, 50, 100, and 200 mg/L.. Run duration is
50 days. As expected, we see a dramatic increase in VOC removal rate
as its vapor pressure (and therefore C%,,) increases. The value of k¢, 10~
s~ !, is sufficiently large that kinetic limitations are not a significant factor
in these runs.

The effect of the isotherm parameter C’ on the cleanup rate is shown
in Fig. 5. C' gives a measure of the adsorptive capacity of the soil; the

TABLE 1
Default Values of the Parameters Used in the SVE Model
Depth to water table 10 m
Depth of well 8.5m
Soil density 1.7 g/lcm?
Soil permeability 0.1 m¥atm-s
Soil porosity 0.3
Air flow rate 50 SCFM
Céu 200 mg/L
C’ 1000 mg/kg
Exponent B 1
Rate constant Ay 10°4s!
Domain radius 15 m
I 15
J- 10
Temperature 15°C
Nmax iD image potential series 40
Contaminant concentration S00 mg/kg
Radius of contaminated zone 10 m
Depth of contaminated zone: Figs. 4-8 8m
Figs. 9 and 10 10 m
Initial total contaminant mass: Figs. 4-8 2136 kg
Figs. 9 and 10 2670 kg
At Figs. 4-8 100 seconds
Figs. 9 and 10 10 seconds
Duration of run: Figs. 4-7 50 days

Figs. 8-10 10 days
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0 25 days 50

FIG. 4 Plots of reduced residual contaminant mass Mo ¢)/M,(0) versus time, days; effect
of the isotherm parameter C%,. C¥,, = 25.50. 100, and 200 mg/L from the top down. Other
parameters as in Table 1.

larger C’, the higher the concentration of adsorbed VOC must be to yield
a given vapor concentration. We therefore expect C’ to increase with
increasing clay content and concentration of natural organic carbon in the
soil, and to see VOC removal rates become smaller as C’ increases. This
is observed in the runs shown in Fig. 5. for which C' = 500, 1000, 2000,
and 4000 mg/kg, from the bottom up.

Inspection of the 1sotherm plots in Fig. 3 shows that, as C* decreases,
C¢ decreases more rapidly toward zero as B is increased. We therefore
expect that VOC removal will become slower as B increases, as is ob-
served in the runs shown in Fig. 6 as B is given values of 1, 1.25, 1.5,
1.75, and 2. Also, we see that the larger values of B result in very pro-
nounced tailing. Tailing is normalily associated with kinetic processes. The
value of k, used in these runs is sufficiently large that the desorption
rate is not controlling; the tailing in this case is purely an equilibrium
phenomenon associated with the nonlinearity of the adsorption isotherm
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FIG.5 Plots of reduced residual contaminant mass Mo 1)/M,,i(0) versus time, days: effect
of the isotherm parameter C'. C' = 500, 1000, 2000, and 4000 mg’kg, from the bottom up.
Other parameters as in Table 1.

as C’ becomes small. With this type of tailing, isotherm tailing, one does
not expect to find soil gas VOC concentration rebound after the well has
been shut down. If B is larger than 1, the binding of the VOC molecules
being removed becomes stronger as desorption approaches completion,
so removal becomes more difficult. If one is using linear isotherm termi-
nology, one would say that the air/soil partition coefficient decreases with
decreasing VOC concentration.

The effects of gas flow rate are shown in Figs. 7 and 8. In Fig. 7 the
value of ks, the desorption rate constant, is 1077 s~ !, one-tenth the value
for ks used in Fig. 8. The durations of these runs are 50 days. In Fig. 7
the effect of gas flow rate (25, 50, 100, and 200 SCFM) is relatively slight
since the removal is desorption rate-limited. We see, for instance, that
doubling the gas flow rate from 100 to 200 SCFM increases the cleanup
rate negligibly.

In Fig. 8 the value of k; has been increased to 107+ s}, the durations



12: 07 25 January 2011

Downl oaded At:

538 RODRIGUEZ-MAROTO ET AL.

1.0
0.5}
Meoc (t) ®
Meot (0) 2. 0
1.75
1.5
13~L.25 ,
0 25 days 50

FIG. 6 Plots of reduced residual contaminant mass M,.(1)/M,(0) versus time, days: effect
of the isotherm exponent B. B = 1.0. 1.25. 1.5, 1.75, and 2.0. from the bottom up. Other
parameters as in Table 1.

of the runs are 10 days. and again the gas flow rates are 25, 50, 100,
and 200 SCFM. At this faster desorption rate the cleanup is now mainly
advection-limited, and increasing the gas flow rate therefore results in
substantial increases in cleanup rate, although cleanup rate is not propor-
tional to gas flow rate as would be the case in a strictly local equilibrium
model.

The measurement of soil gas VOC concentration rebound after gas flow
at the SVE well has been stopped has been suggested earlier as a means
of assessing the importance of kinetic limitations (33, 34, 46), and model
calculations indicate that this is a good way of estimating the impact of
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FIG.7 Plots of reduced residual contaminant mass M (71)/Mi(0) versus time, days; effect
of the gas flow rate Q. Q = 200, 100, 50, and 25 SCFM, from the bottom up; ks = 107%
s !': other parameters as in Table 1.

diffusion kinetics on SVE (36, 39, 47). In connection with desorption equi-
libria and Kkinetics, one expects concentration rebound measurements to
provide a means of distinguishing between tailing associated with equilib-
rium isotherm control (a large value of B, for example, as seen above)
and tailing associated with kinetic control by the rate of desorption (i.e.,
a small value of ky).

This is explored in the runs plotted in Figs. 9 and 10. In these runs the
simulations were run for 10 days; 5 days of SVE followed by 5 days of
equilibration for the observation of concentration rebound. In Fig. 9 the
value of B used is 1, so at low total soil VOC concentrations the isotherm
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L
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FIG. 8 Plots of reduced residual contaminant mass Mo (1) M,o(0) versus time, days; effect
of the gas flow rate Q. Q = 200. 100. 50, and 25 SCFM. from the bottom up: k; = 10" *
s~ ': duration of run = 10 days: other parameters as in Table 1.

is linear; in Fig. 10, B = 2, corresponding to a strongly nonlinear isotherm
at low VOC concentrations. In both figures the values of k, used were
1073, 1074, and 1077 s~ !, covering the range from very fast to very slow
desorption.

In Fig. 9 we see that concentration rebound is virtually negligible for
k; = 1073 s~ ' amounts to an increase of about 30% for k; = 10 "*s~",
and results in an increase of about 500% for k; = 107> s~'. The first two
of these runs show rather rapid removal and little tailing; the last one
exhibits a good deal of tailing. (See Fig. 7 for the behavior of a run identical
to the last over a period of 50 days.)
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FIG. 9 Plots of reduced residual contaminant mass Mo\(#)/M:(0) and of reduced off-gas

VOC concentration Cem(1)/C%, versus time, days; effect of k7 on soil gas VOC concentration

rebound after shutdown. £, = 10732 (3), 107 (4), and 1077 s~! (5) as indicated: B = 1
other parameters as in Table 1.

In Fig. 10 we also see that concentration rebound is virtually negligible
for ky = 1073 s~ 1, yields an increase of about 30% for k; = 10 % s~ !,
and results in an increase of about 500% for k; = 107> s~!, Here B =
2, so the strongly nonlinear isotherm causes severe tailing in all of the
runs. Evidently, however, one can distinguish between tailing resulting
from slow desorption rates (which also result in soil gas VOC concentra-
tion rebound) and tailing resulting from a nonlinear adsorption isotherm
(which does not show rebound). Cleanup can be substantially accelerated
by increasing the gas flow rate if the tailing is due to a nonlinear adsorption
isotherm. On the other hand, cleanup will be only slightly accelerated by
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FIG. 10 Plots of reduced residual contaminant mass M, 7)/M(0) and of reduced off-gas

VOC concentration Cem(1)/C¥%, versus time. days: effect of k; on soil gas VOC concentration

rebound after shutdown. Ay = 10" (3). 107* (). and 10~ " s~ (5) as indicated; B = 2:
other parameters as in Table I.

increasing the gas flow rate if the tailing is due to a slow desorption reac-
tion rate. Thus. distinguishing between the two cases is a matter of some
practical interest in selecting operating conditions for an SVE system.

CONCLUSIONS

A mathematical model for SVE has been developed which permits the
exploration of the impact of nonlinear adsorption isotherms and of the
rate of VOC adsorption by the soil on the rate of cleanup by SVE. This
model has been used to exhibit the dependence of cleanup rate on the
parameters of the nonlinear adsorption isotherm and on a rate constant
ks associated with the adsorption process. The results lead to the following
conclusions.

1.0
5
Meoe ()
Mtot ( 0 ) ;
0.5}
Cerna(t)
c?
3 S
m — 2
5 / 3
A S . |
¢ 5 days 10
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Cleanup curves of a sort quite similar to those found in modeling diffu-
sion-limited SVE by the lumped diffusion parameter method are ob-
served for small values of ;.

Reduced cleanup rates can also be the result of the values of the isoth-
erm parameters. In particular, severe tailing in the terminal phase of
the remediation may be the result of an equilibrium isotherm which
approaches the form C¢ = K(C*)5, where B > 1 as C* approaches
Zero.

As with diffusion-limited SVE, it is quite probable that short-term pilot-
scale experiments will not identify conditions which will result in signif-
icant tailing during the terminal phase of a cleanup by SVE.

One can distinguish between poor SVE performance due to small ad-
sorption/desorption rate constants and poor SVE performance due to
the characteristics of the adsorption isotherm by measurements of soil
gas VOC concentration rebound curves after gas flow to a well has
ceased. Rebound will result if diffusion and/or desorption rates are
limiting. Rebound will not result if the characteristics of the adsorption
isotherm are limiting. Increases in the gas flow rate will not be advanta-
geous in the former case, while they will result in increased VOC re-
moval rates in the latter situation.
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